[
cs681fig1-2.cdr
Monday, February 26, 2024 12:14:34 PM
Color profile: Disabled

Composite Default screen

> [Runtime] Growth

Ultimate Sorting Algorithms Comparison

by FadyS. Ghatas | Aug 5, 2015 | Algorithm Analysis | 0 comments

Ultimate Sorting Algorithms Comparison

40M
titrias.com/ultimate-sorting-algorithms-comparison
30M
20M
B
£ >
=
10M
oM
-10M 7 \
10k 20k 30k 40k \ 50k 60k 70k 80k 90k 100k)

-0~ Bubble -#- Selection Insertion Merge —* Quick

© 2024 Dr. Muhammad Al-Hashimi KAU e CS-681 1

[
cs681fig1-2.cdr
Monday, February 26, 2024 12:14:34 PM
Color profile: Disabled

Composite Default screen

&,

Therefore, base efficiency

e goumormnime AlgOrithms run longer on larger
illplltS (run time growth varies widely)

itself.

o 2 Focus time efficiency for large inputs
% Need to isolate algorithm performance
from that of machine and code

Most of the runtime is

smnmemoire 2 TIMe efficiency may be measured by

quently executed opera-

ton® growth of basic operation count, C(n),
as input size n increases

© 2024 Dr. Muhammad Al-Hashimi KAU e CS-681 2

Non-recursive Algorithms

Color profile: Disable:

> Order of growth

What property of the

e imeens. @ Select suitable input size parameter, n

causes run time to
increase?

e« @ ldentify a suitable basic operation

operations.

Will the count (run time)

un o amnces @ Check dependancy of basic op

of the same size? Check
loops for early exits some-
times.

wemen ot @ Calculate count C(n): write a sum

manncmone @ Determine order of growth of C(n)
tends to «) is enough.

© 2024 Dr. Muhammad Al-Hashimi KAU o CS-681 3

Review Summations

Color profile: Disabled

A Useful Tool

FROM THE MAKERS OF WOLFRAM LANGUAGE AND MATHEMATICA

‘ sum (sum 1 fromj =i+1ton) fromi=1ton

Sum

~> Basic properties ...
zu:cai:czu:ai Z(aiﬂ:bi):ZaiiZbi
i=l i=l i=l i=l i=l

o amvendyes v BASIC Sums (references)

choose to solve Example 1
from previous slide?

leu—H—lWherelSu
i=l

Upper term times follow-

ing one, divide . _ . ﬁ*. (/ 1
g one, divided by 2 ZZ:LZ:1+2+"‘+TL:TL\TL2—|—)
1=0 1=1

© 2024 Dr. Muhammad Al-Hashimi KAU o CS-681 4

cs681fig1-2.cdr
Monday, February 26, 2024 12:14:35 PM
Color profile: Disabled

Composite Default screen

One of the easiest non-
trivial algorithms.

For each key, do a selec-
tion round to pick the
smallest.

Useasmall instanceto — .39 45 g8 90 29 34

figure out/design steps
before writing a pseudo-
code (mix of natural lan-
guage, math, and program-
ming-like expressions).

Selections are marked bold
(for example, in the first

round: 45, 29, 17); the last
one to select is picked out.

The last may be swapped
with the first of a selection
round when sorting inside
the input array (in-place).

© 2024 Dr. Muhammad Al-Hashimi

Non-recursive Algorithms

17
Limits©
v v —
89 45 68 90 29 34 17
v v \%
45 68 90 29 34 89
v
68 90 45 34 89
90 45 68 89
90 68 89
90 89
A
17 29 34 45 68 89 90

Example 1

> [Problem] Instance
> Pseudocode

Selection Sort, efficiency?

Algorithm Selection Sort

Input Array of n keys A[0..n—1]
Output Sorted array
v

1: fori<—0Oton-2do

2 sel « i

3 forj—i+1ton—-1do
4 “if A[j] < A[sel] then
5: sel «—j

6 swap Ali], A[sel]

KAU CS-681 5

cs681fig1-2.cdr
Monday, February 26, 2024 12:14:36 PM
Color profile: Disabled

Composite Default screen

Non-recursive Algorithms

E P do- @ LJ
e, o Efficiency?

algorithm could greatly
facilitate analysis.

Quiz

What would be a suitable
basic operation? Can we
pick + or - in line 3? What
about loop exit check or
index increment (j++)?

© 2024 Dr. Muhammad Al-Hashimi

Algorithm Selection Sort

Example 1

= Basic operation

Input Array of n keys A[0..n—1]
Output Sorted array

v
fori—0ton-2do

1:

2 sel « 1

3: Oforj—i+lton-1do
4 “if A[j] < A[sel] then
5. sel «j

6 swap Al[i], A[sel]

© Select suitable input size parameter, n
@ Identify a suitable basic operation

® Check dependancy of basic op

O Calculate count C(n): write a sum

@ Determine order of growth of C(n)

KAU CS-681 6

Composite Default screen

© 2024 Dr. Muhammad Al-Hashimi

Analysis of Algorithms
Effciency

o> Observation

Time efficiency of most algorithms falls
into a few categories of (runtime) growth

o> A classification?

A system for classifying efficiency should
avoid dealing individually with efficiency
of potentially 1000s of algorithms

KAU o CS-681 7

A Useful Tool from Math

Color profile: Disabled

= Asymptotic Classification

o> Asymptotes

A useful

°o® erut
sorting bin

A boundary that other @
curve(s) may come close to
but never cross.

Any function can be used
to set a boundary, in this
casey =f(x)=?

-5 -4 -3 -2 -1 0 1 2 3 4 5

© 2024 Dr. Muhammad Al-Hashimi KAU o CS-681 8

Asymptotic Classification

Color profile: Disabled

== Setting Upper Boundary

T
Setup an upper boundary g (n)
N

on order of growth.
A A celling that
other curves

can approacl/\
but never cross

(O

t, stays under after some
n>ngoft.

t(n),t(n) €0(g(n))

care

- N— 00

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

I
=

don’t " S ’

(=
;

|

0 g "
All functions that eventually
go to infinity below g(n),
each via its own n, and ¢,
are in O of g(n).

© 2024 Dr. Muhammad Al-Hashimi KAU e CS-681 9

Asymptotic Classification
Settlng Lower Boundary

Color prbfile: Disabled

t(n)€Q(g(n))

g(n)

© 2024 Dr. - Muhammad Al -Hashimi KAU e CS-681 10

Asymptotic Classification

Color profile: Disable

© - Similar Growth

g(n)
t(n)

g(n)
Exercise

Write a formal (math)
definition of O, Q, ©.

t(n)€O(g(n))

© 2024 Dr. Muhammad Al-Hashimi KAU e CS-681 11

Asymptotic Classification

Color profile: Disable

Composite Default screen ExerCis e

- cs(n)
‘ /(n)eown
* o)

n < n 1

o) 100n + 5 € O(n?) in(n —1) € O(n?)
n® ¢ O(n?) 0.00001n* € O(n*) n*+n+1¢0(n?

1n(n —1) € Q(n*) 100n+5 & Qn?)

n® € Q(n?) 2

2024 Dr. Muhammad Al-Hashimi KAU e CS-681 12

cs681fig1-2.cdr
Monday, February 26, 2024 12:14:39 PM
Color profile: Disabled

Composite Default screen

|| TABLE 2.2 Basic asymptotic efficiency classes

Using long-term (limiting)
runtime behavior to clas-
sify efficiency as inputs
become increasingly
larger.

© 2024 Dr. Muhammad Al-Hashimi

Algorithm Efficiency
Basic Classes

Class Name Comments

1 constant Short of best-case efficiencies, very few reasonable
examples can be given since an algorithm’s running
time typically goes to infinity when its input size grows
infinitely large.

logn logarithmic Typically, a result of cutting a problem’s size by a
constant factor on each iteration of the algorithm (see
Section 5.5). Note that a logarithmic algorithm cannot
take into account all its input (or even a fixed fraction
of it): any algorithm that does so will have at least
linear running time.

n linear Algorithms that scan a list of size n (e.g., sequential
search) belong to this class.

nlogn “n-log-n” Many divide-and-conquer algorithms (see Chapter 4),
including mergesort and quicksort in the average case,
fall into this category.

n? uadratic Typically, characterizes efficie: n .

! tvzg emgedded loops (see the 2 exponential

tary sorting algorithms and cg
n-by-n matrices are standard ¢

n’ cubic Typically, characterizes efficie .
three embedded loops (see th nl factorial
nontrivial algorithms from ling

> Asymptotic efficiency

()
Typical for algorithn
n-element set. Ofter
in a broader sense tc
growth as well.

Typical for algorithn
of an n-element set.

class.

KAU o CS-681 13

Non-recursive Algorithms

Color profile: Disabled

o> Worst-case efficiency

Recognize structure H t d"

= Conditionals reduce op OW 0 rea °
frequency

= Loops (non-recursive)

amplily frequency Algorithm UniqueElements
= Look for early exit clues
Input Array A[0..n — 1]
Output Return true if elements in A distinct, otherwise false

1: fori+<0ton—2do
2: for j <71+ 1ton—1do

Quiz o . .

Does the basic operation 3: lf A [Z] — A []] then @ Select input size parameter, n
count depend on input size)) o
only? Hint: Try different 4: return false @ Identify a suitable basic operation
instances of the same size. ® Check dependancy of basic op

5 return true

@ Calculate count C(n): write a sum
©® Determine order of growth of C(n)

© 2024 Dr. Muhammad Al-Hashimi KAU e CS-681 14

Asymptotic Classification

Color profile: Disabled

A Useful Property

4
8 ., _, = Revisit: decide if keys distict
2 2 2

~1 7 27 & A solution: overall efficiency?
12 Sort, check consecutive pairs

o> Compare Example 2

Of course, it is based on E:> BaSis (theorems-prOOfS)

the time formula T=T7+T>,
however, no sense in
going to basic principles
everytime.

© 2024 Dr. Muhammad Al-Hashimi KAU e CS-681 15

Non-recursive Algorithms
@
Exercise

Composite Default screen

Recognize structure
= Procedures nested vs. HOW to read?
sequenced

= Conditionals reduce op
frequency Algorithm Factorial Algorithm InsertionSort

®;I‘L°plﬁf§,nf‘;g§$?yive) Input Integer > 0 Input Array A[0..n— 1] of orderbale keys
= Look for early exit clues OUtPUt Sorted array

Output n! .
1: fori<—1ton-1do

1: f&lCt(—l 2. 1}<—A[l]
2: fori < 1tondo 3 jei-1
3: fact < factxi 4: while j>0and A[j] >v do
4: return fact 5: Alj+1] < Afj]
6: je—j-1
7: Alj+1] v

> Write C(n)
% o Determine efficiency

© 2024 Dr. Muhammad Al-Hashimi KAU e CS-681 16

