
© 2420 Dr. Muhammad Al-Hashimi 1KAU CS 704-

Motivation

� Physical device to (binary) code: 0see Slide

� Specifying operations and
operands

Let’s examine closely how
a typical machinemodern
expects andoperations
operands, but first a
major realization ...

A computer, composed of
physical devices that encode
and transform a binary state
(represented as bits), needs
to know what to do in terms
of its physical circuitry.

Fundamentally, transistors
encode a switching state in a
circuit interpreted as a number
in binary, denoting a numeric
value, a character shape, or a
selector code for a sub-circuit.

� From logical representation
(high-level) to machine code

Previously…

Ops

Instructions

Operands An advanced review not about
MIPS or assembly programming,

focus on instruction issues,
tradeoffs, and examples

cs704fig_instr.cdr
Thursday, February 15, 2024 10:40:10 AM
Color profile: Disabled

Composite Default screen

© 2420 Dr. Muhammad Al-Hashimi 2KAU CS 704-

High Level Program
(story starts here for most)

Specify /varslogic
(an algorithm)*

Unpack according to
physical resources

Machine instr

Machine instr

Decode

Compile

Physical operations
& operands

Software

Hardware

▼

10001100010011110000000000000000

10001100010100000000000000000100

Computers are designed
to completely hide the
machine We. need to peel
many layers.

Encode requested operations

and pass operands in ways

specific to machine

machine may have
enough circuitry to

handle ops at amany
time (3 in example

�

* epeatedly compare orderableR
keys in certain ways (perhaps

to sort), for example

Package + schedule
requests based on

machine specs

Peeling the Layers

function listVerts() {
for (i=0; i<this.nv; i++) {var

var v = this.vert[i];
"VERT: ", , v.label;print i

}
}

Repackage?

M codeachine

OPS
Operands

cs704fig_instr.cdr
Thursday, February 15, 2024 10:40:12 AM
Color profile: Disabled

Composite Default screen

© 2420 Dr. Muhammad Al-Hashimi 3KAU CS 704-

MIPS Register Operands

Basic Arithmetic

In 1985, the original MIPS
processor had 32 ,registers
denoted , each 32 bits$0 $31–
with fixed $0 0.←

Registers are$16-$23 symboli-

cally referred to as in$s�-$s7

MIPS assembly.

An Assembly instruction is a
human-symbolic representation
of a binary .machine instruction

� Register, opcodeRegister operands, fundamental
to machine instructions, focus on
speedy access (number and bit
size re�ect tradeoffs driven by the
state of technology).

� ssemblyA language

sub $,$,$16 17 18

mult $16,$17,$18

div $16,$17,$18

add $s�,$s1,$s2

[Symbolic]

Opcode
+←

17

?

+

$s0

$s1

$s2
�

R transferegister-to-register
of the binary-coded operands

�

cs704fig_instr.cdr
Thursday, February 15, 2024 10:40:13 AM
Color profile: Disabled

Composite Default screen

© 2420 Dr. Muhammad Al-Hashimi 4KAU CS 704-

MIPS Memory Operands

Load-Store

A numbering scheme for logi-
cally usable memory cells, con-
ventionally, every 8 bits (byte)
given a unique numerical code.

LW Specification

• Read a frombase addr $s1

• Sum base addr and constant
passed within instr (8)

• Fetch 4-byte data word
using sum as memory addr

• Store data word in $s�

� Memory address

lw $s�, ($s1)8

+
$s1

8

$s0

…

… memory
operandbase address

constant offset
addr

� 52
� 42
�23

…

Get 4-byte word

starting at memory

byte address 024

to fill reg.

High-level variables are kept in

memory, () useds -$s7� $16-23

conventionally by the compiler
to track up to 8 at a time.

Mem[8+$s1]
←

Load Word Opcode

R memoryegister- transfer
of binary-coded operands

�

cs704fig_instr.cdr
Thursday, February 15, 2024 10:40:15 AM
Color profile: Disabled

Composite Default screen

© 2420 Dr. Muhammad Al-Hashimi 5KAU CS 704-

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1

1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 01 0 1 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 0 1 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1

1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

1 0 0 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

1 0 0 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

1 0 1 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

1 0 1 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

1 0 1 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1

Machine Instructions

�

Compilers decide how to
sequence, i.e., ,schedule
instruction words hence the
term .program

Quiz
Guess what the program
does?

add , ,$s� $s1 $s2

031 611162126

op rs rt rd shamt funct

▼

������ 1�����1���11��1�1���������

17 1816
32

0

and $16,$17,$18

or $16,$17,$18

6-bit opcode

▲

The machine sees s ofstream
bits, not neatly formatted
instruction words.

Logical operations share the
same (i.e., circuit,opcode
guess which one?).

� Instruction word

add $2,$4,$2

lw $15,�($2)

lw $16,4($2)

sw $16,�($2)

sw $15, ($2)4

▼
▼

��������1�����1����1� 1����������

1���11���1��1111����������������

1���11���1�1�����������������1��

1�1�11���1�1��������������������

1�1�11���1��1111�������������1��

▼ ▼▼

▼

▼ ▼

▼

12832

cs704fig_instr.cdr
Thursday, February 15, 2024 10:40:19 AM
Color profile: Disabled

Composite Default screen

© 2420 Dr. Muhammad Al-Hashimi 6KAU CS 704-

Connections

Program Execution
� Program counter (PC)

Quiz
Wh is responsi-ich component
ble for finding a program on
the flash/hard , loadingdisk it
in memory, and placing its
start address in the PC?

A special regis-programmer
ter not part of the general
purpose register GPR() set

($�-$31 in MIPS).

A , literally, is aprogram
scheduled sequence of
instruction words.

00000000100000100001000000100000
10001100010011110000000000000000

10001100010100000000000000000100
...

1000

PC

100000000000

10000010

00010000

00100000

10001100

01001111

...

...

...

addr

1001

1004

1002
1003

1000

▼

Flash hard/ Disk

Memory

...

00000000 10000010 00010000 00100000
10001100010011110000000000000000
10001100010100000000000000000100

▼

Machine Program

CPU

fetch decode

execute

The classic 3-phase machine
cycle matched actual processing
in early CPU (nowadays generic,
broken into more physical ones
and typically involving multiple
instructions).

cs704fig_instr.cdr
Thursday, February 15, 2024 10:40:20 AM
Color profile: Disabled

Composite Default screen

© 2420 Dr. Muhammad Al-Hashimi 7KAU CS 704-

Decision Instructions

Conditional Branch
� Memory label

Branch/Jump instructions
allow programmers to condi-
tionally or un-conditionally
write to the PC.

Branch = PC written,taken
breaking the execu-default
tion flow.

Branch + logical instructions
implement high-level condi-
tional and loop statements (a
conditional is no more than
a loop that runs zero or n=1
times).

bne $s3,$s4,EXIT
add $s�,$s1,$s2

: ...EXIT

Branch if not equaltaken

$s1 s2< $? : �1

$s�,$s1,$s2slt

Set on less-than condition

$s�,bgtz EXIT

Branch taken if greater-than 0

Branch if equal

beq $s3,$s4,EXIT

add $s�,$s1,$s2

...EXIT:

Symbolic Address

taken

$s3=$s4

$s0 $s1+$s2←

yes

no

exit

LOOP EXIT: ,$s4,beq $s3

...EXIT:
j LOOP

add ,$s3,1$s3

...
int =�, =5;i n

(++ <)i nwhile
{...}

$s3 ← i

$s4 ← n

cs704fig_instr.cdr
Thursday, February 15, 2024 10:40:22 AM
Color profile: Disabled

Composite Default screen

© 2420 Dr. Muhammad Al-Hashimi 8KAU CS 704-

Addressing Modes

Register addressing

Base (displacement)

Immediate addressing

PC-relative addr

Pseudodirect

Essentially, ways to
specify , anoperands
important aspect of
machine instructions.

Is it a good idea to provide an
opcode adding a memoryfor
operand a register operand?to
Specify changes to instruction
design.

� Immediate operand

addi $16,$,0 25000

�

� Load-store machine

PC

32-bit
branch target

16-bit branch
offset+

EXIT

25���
��1��� �x61A8

beq 0$1,$,EXIT

000000 1000000000010001 10010 10000

±

+

100011 10001 10000 0000000000001100
101011

Base Register

cs704fig_instr.cdr
Thursday, February 15, 2024 10:40:22 AM
Color profile: Disabled

Composite Default screen

© 2420 Dr. Muhammad Al-Hashimi 9KAU CS 704-

Machine Operands

Variations

� Unsigned integers

� Floating point reals

� Short operands

� Default operands

� Complications (overflow...)

Separate instructions deal with
important operand andtypes
the complications resulting
from finite bit representations.

Byte/double-byte operands
are important for process-
ing text (ASCII and Unicode
characters).

Shorter floating point
operands optionally allow
faster processing at expense
of range and precision.

Typically 2’s complement
signed integers in as many
bits as fits in a data register
or GPR (in MIPS-like designs),

corresponding to dataint

type in C-like languages.

Engineering and scientific
calculations require a
versatile representation of
real numbers.

Quiz
Different operands are indistin-
guishable bits for the machine,
how can it tell them apart? What
are the consequences for a com-
piler? Hint: physical machine’s
concerns may differ from those of
programmers (see Wulf).

AnswerDifferent opcodes are
used for different operand
types and related operations.

�

cs704fig_instr.cdr
Thursday, February 15, 2024 10:40:22 AM
Color profile: Disabled

Composite Default screen

© 2420 Dr. Muhammad Al-Hashimi 10KAU CS 704-

Connections

Software Execution Model

In , instructionpractice some
sequences from the same pro-
gram are logically independent
and may run in any order or
threaded concurrently.

is an abstractionControl flow
of sequencing performed by the
physical of a CPUcontrol unit
(the actual execution sequence
may be more complex than
what programmers see).

� Execution thread

We may visualize the default
execution sequence, due to
incrementing a PC, as imaginary
thread through consecutive
instructions; sequencing control
may be thought to alongflow
threaded instructions.

Quiz
Compare toa procedure
an ?exception/interrupt
Hint: consider a scheduling
viewpoint.

� Control flow

Extra resources are needed to
run different threads concur-
rently. At a minimum, an OS
that concurrence bysimulates
transferring control around.

An OS howis concerned with
instructions flow through hard-
ware, not their execution details.

▲

��

� �

Thread

branch instr

replace PC

increment PC

➞
➞

instr1

instr2

instr3

…

➞
➞

➞
➞

➞

00100000 ..000010.

cs704fig_instr.cdr
Thursday, February 15, 2024 10:40:23 AM
Color profile: Disabled

Composite Default screen

© 2420 Dr. Muhammad Al-Hashimi 11KAU CS 704-

Instruction Models

� CISC (Intel 8086): do more

� SC (MIPS): doRI less

� VLIW: do in parallel (later)

� ataflow modelD origins
� Where multi-threading fits?

Instruction execution

� Hardware threadsExercise Compare parallel-
ism and concurrency.

Multithreading can support
apparent concurrency; programs
will seem to run faster.

Essentially set ofa
opcodes operandand
specifications thethat
hardware can recognize.

Pack multiple independent
ops in one instr to relieve
fetch-decode burdens and
facilitate parallel execution.

� Instruction set

�

Ops
Operands

Addr Modes
Instr Set

Natural data �ow allowed
concurrence where centralized
control forced arti�cial sequenc-
ing, which motivated adding
functional units to exploit it.

cs704fig_instr.cdr
Thursday, February 15, 2024 10:40:23 AM
Color profile: Disabled

Composite Default screen

© 2420 Dr. Muhammad Al-Hashimi 12KAU CS 704-

Register Size Limitation

� Memory addressing
Limit directly memoryaccessible

� Computation
Limit computation performed directly
in hardware

What if operands don’t fit?
Breakdown computation in software

Most machines will not
provide circuitry to handle
more bits than associated
registers can store.

Historically, separate regis-
ters were used for data
operands, indexing, and
addresses; MIPS uses GPR
in all cases.

The number of bits internal
registers can hold is a major
architectural feature.

Reg size can influence
instruction design and
capabilities in subtle ways.

Old microprocessors had eco-
nomic variants with narrower
data bus (fewer pins) labeled
8/16-bit despite having the
same wider internal registers
(e.g., 8086/88, 68000/68008).

�

Quiz
Why would the move from
a to -bit32-bit processor 64
be significant from instruc-
tion set viewpoint?

cs704fig_instr.cdr
Thursday, February 15, 2024 10:40:23 AM
Color profile: Disabled

Composite Default screen

© 2420 Dr. Muhammad Al-Hashimi 13KAU CS 704-

Most computers can add two
32/64-bit integers in physical
registers using physical circuits
but can’t calculate f directly
since they lackmostly a dedi-
cated circuit to perform a
difference-of-2-sums operation.

A compiler can easily gener-
ate a sequence of machine
instructions to perform the
operation.

Similarly, while classic MIPS
(circa 1985) can’t add two
128-bit integers in hardware,
a small (schedule ofprogram
instructions) can do it.

The operation is said to be
performed in sincesoftware
no .circuitry is dedicated for it

Connections

What Exactly is Software?

add $t ,$s ,$s2 4 5

add $t ,$s ,$s1 2 3

sub $s ,$t ,$t1 1 2

A computer designer may
decide to provide physical
circuits for such expressions
and a corresponding machine
instruction ough, as wasth
the case often with CISC.

Different machine programs
(why?) even though they
logically perform the same
operation.

add $t ,$s ,$s0 2 3

add $t ,$s ,$s1 4 5

sub $s ,$t ,$t1 0 1

f=(+)-(+);x y s t

$s f, , , ,1–5 x y s t←

$t +1 x y←

$t +2 s t←

add $t ,$s ,$s1 2 3

add $t ,$s ,$s2 4 5

sub $s ,$t ,$t1 1 2

2 51 …

cs704fig_instr.cdr
Thursday, February 15, 2024 10:40:23 AM
Color profile: Disabled

Composite Default screen

© 2420 Dr. Muhammad Al-Hashimi 14KAU CS 704-

High-level languages are
the most significant front-
end interface for humans.

Typical scenarios,
implementations vary
depending on design
tradeoffs.

Some ops performedlogical
by machine instr directlya
in circuits (physical hard-
ware) others synthesized.

Decode burden shared
among compiler, a hardware
decoder, and control unit.

Note oflayers
processing?

Assembler “instructions”
like further hide themove

bare machine.

Everything above this line
is essentially .overhead

Issue individual or
packets of hardware
ops depending on
machine resources

Bind (i.e., assign)
Resources & Execute

Microarchitecture

Hardware-ready
ops/operands

Machine instr

Decode

Pass sequences of
hardware command
signals ().micro-code

�

Front-end
�

�

�

Control �
�

�

Compile

function listVerts() {
for (i=0; i<this.nv; i++) {var
var v = this.vert[i];

"VERT: ", , v.label;print i
}

}

�
�

Software (mostly)

Hardware (mostly)

The Front-end

Package + schedule
based on ISA

Specify logical
ops & operands

Potentially reschedule

�

�

High-level Language

Multiple issue

�

���

Instruction Set Architecture (ISA)

Dependencies

add $2,$4,$2
lw $15,�($2)

$15,move $16
Ops

Instructions

Operands

cs704fig_instr.cdr
Thursday, February 15, 2024 10:40:26 AM
Color profile: Disabled

Composite Default screen

© 2420 Dr. Muhammad Al-Hashimi 15KAU CS 704-

Instruction Design

Simplified vs. Complex

Intel 8088 ADD
Memory operand
9 cycles + 4 cycles (transfer)
+ address computation

Register operand
3 cycles

Conditional branch
Intel 8088/8086
JG JGE JL JLE/JNLE /JNL /JNGE /JNG

JO JS JNO JNS

JA JAE JB JBE/JNBE /JNB /JNAE /JNA

JC JE JP JNC JNE/JZ /JPE /JNZ

JNP/JPO

JCKZ CMP*

MIPS R2000/3000
beq bne bltz blez bgtz

bgez bltzal bgezal

slt slti sltu sltiu

Instruction set supports every
potentially useful condition
with a variety of operand
scenarios.

A memory operand can
considerably complicate the
execution pro�le of the instr
on the same hardware.

MIPS supports a minimum
necessary to compose the rest,
favoring the more frequent
scenarios, with fast register
operands only.

▲

cs704fig_instr.cdr
Thursday, February 15, 2024 10:40:26 AM
Color profile: Disabled

Composite Default screen

© 2420 Dr. Muhammad Al-Hashimi 16KAU CS 704-

Instruction Design

Note on Composability

Fused multiply-add
One instruction, jobstwo

Indexed Addressing
Processing large arrays

8086/8088 (CISC)

MIPS (R10000)

PowerPC (RISC)

ARMv8 (RISC)

MIPS R2000/R3000

MIPS R2000/R3000

lw $t1,$a0+$s3

madd r4,r2,r3,r1

MOV AX,[BX+]SI

madd.d f4,f1,f2,f3

addu $t0,$a0,$s3

lw $t1,0($t0)

A frequent op in signi�cant
applications (part of a sum-
of-products calculations) for
which a dedicated machine
instruction (circuit) may be
justi�ed.

Memory address obtained
from 2 registers, one for
array base address and the
2nd for a variable index
(instead of a constant).

Or, machine maya offer
a pseudo-instruction
() to make program-gray
ming easy, to be com-
posed a sequence ofby
machine instructions
().in color

Note version (opcode)

of needed to treatadd

operands as unsigned
since dealing with an
address.

$ mem[$ +$]t1 a� s3←

r4 r1 + r2 r3← ×

r1 r1 + r2×r3←

madd $s4,$s1,$s2,$s3

multu $s2,$s3
mflo $at
add $s4,$s1,$at

▲

�Note specialized register
for (base) indexing in
8086/8088 vs. GPR in RISC.

cs704fig_instr.cdr
Thursday, February 15, 2024 10:40:26 AM
Color profile: Disabled

Composite Default screen

